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I. Abstract 

 

    This paper predicted the monthly average carbon dioxide level (ppm) of Mauna 

Loa, Hawaii in April 2015. Using data extracted from National Oceanic and Atmospheric 

Administration (NOAA) Mauna Loa Observatory, we projected the April average CO2 

level to be 402.7285 ppm with 95% confidence interval of (402.1101, 403.3469) ppm and 

99% confidence interval of (401.9161, 403.541) ppm. The ARMA (1, 1) model was used 

to forecast the CO2 level from previously recorded data. (The classical decomposition 

model fails to pass the residual diagnosis.) Series of data from different time periods were 

chosen for analysis by the ITSM package of R software. Results were compared and 

suggested data from March 1999 to February 2015 provided the most reasonable 

estimation. 

 

II. Introduction 

 

    Located at 11,141 feet on Mauna Loa volcano, the Mauna Loa Observatory is the 

world’s earliest air monitoring station. It continuously monitors and collects data related 

to atmospheric change, particularly the level of CO2. Recorded concentrations of CO2 

from observatory dating from 1958 gave rise to the famous Keeling Curve shown below. 

 
 

Figure 1. Monthly CO2 fluctuations are captured by the red curve. The black curve 

demonstrates the data after removal of seasonality. Concentrations of CO2 are measured 

in a “dry air mole fraction” defined as the number of CO2 molecules over a given number 

of air molecules after removal of water vapor, multiplied by one million (ppm). 

Source: National Oceanic and Atmospheric Administration 

III. Observation of Data 
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The Mauna Loa Observatory provides the average monthly carbon dioxide data 

starting from March 1958. C. David Keeling first developed the idea to record CO2 level 

in 1958. The NOAA started its own CO2 observation after 1972. For consistency, we 

focused on the time frame after 1972. In addition, time prior to 1999, the year of the most 

recent significant El Nino, was discarded from the analysis due to the disrupting effects 

of El Nino on the level of CO2. According to the NOAA analysis, the CO2 fluxes during a 

typical El Niño period are reduced by more than 100% compared with the non-El Niño 

condition (National Oceanic and Atmospheric Administration, 2015). While El Niño 

sometimes triggers substantial changes in the weather, numerous El Niño events 

subsequent to that in 1998 were not strong enough to contribute to the global weather 

change in the near future (Conners, D. 2015). According to “RealClimate”, a popular 

commentary blog on climatology, the El Nino events are particularly strong around 1984, 

1988, 1996 and 1998. In this case, it is justifiable to consider only the period after 1998 

for analysis to eliminate the potential effect of El Nino on prediction.  

 

a. Trend 

According to Figure 2, the current level of atmospheric CO2 is significantly 

higher than at any time in the past 10,000 years. Continuous increase in CO2 level has 

occurred since the beginning of the industrial era (around 1750) and the most substantial 

elevation, recorded by the Keeling Curve, occurred five decades ago (Cook J, 2015). The 

most prevailing explanation for the skyrocketing CO2 level is the increase in burning of 

fossil fuels, half of which occurred since the mid-1970s (Cook J, 2015). While land-use 

changes and cement manufacturing also contribute to the CO2 rise, another intriguing 

reason is about the atmospheric temperature. As the level of CO2 increases, the 

greenhouse effect raises global temperature. Higher temperature in turn reduces the 

solubility of CO2 in ocean. Therefore, more CO2 remains in the atmosphere in recent 50 

years than before. 

 

                        
                                   Figure 2. CO2 levels over the last 10,000 years 

          Source: Cook, J. (2015). Are CO2 levels increasing? 
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Figure 3. Monthly Average CO2 level from Mauna Loa Observatory Station at 

Mauna Loa since 1958 

Source: National Oceanic and Atmospheric Administration (2015) 

 

 

b. Seasonality 

Carbon dioxide level observations for Mauna Loa clearly demonstrate a seasonal 

cycle, which s predicted from the original C. Keeling’s research. As the study indicates, 

they conclude, “The concentration of atmospheric carbon dioxide at Mauna Loa 

Observatory exhibits a seasonal pattern that repeats with striking regularity from year to 

year (Bacastow, R. B, 1985).” In their study, they point out that the CO2 Concentration 

increases at an average rate of about 0.7% per year since 1958, which is also statistically 

significant. This is also corresponding to our analysis for trend. The seasonal cycle of 

CO2 in Mauna Loa is very likely to be associated with metabolic activity of terrestrial 

vegetation. Precisely, the increasing plant activity has contributed to at least part of the 

upward rising in the CO2 concentration (Bacastow, R. B, 1985). 
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Figure 4.  This figure shows a strong seasonal effect. CO2 concentration reaches peak 

regularly in May and declines until September.  

Source: National Oceanic and Atmospheric Administration (2015) 

 

Ⅳ. Model Specification: 

 

We have already confirmed the general rising trend and seasonality for the level 

of CO2, both of which interferes with data analysis. Therefore, the classical 

decomposition model is used to remove trend and seasonality for analysis.  

 

Data analysis with classical decomposition model 

 

Denote                                    Xt = St + Mt + Yt 

 

Where {Xt}, t=1, 2, …, 192 is the monthly average levels of CO2 data from March 1999 

(t=1) to February 2015 (t=192)  

St is the seasonal component of the time series of a period 12, i.e. ∑ 𝑖12
𝑆𝑡 = 0 =1 and St +12 = 

St 

Mt is the trend component of the time series and Yt is the stationary process with mean 

zero. 

We first followed the classical decomposition process to remove the seasonal 

component of the data. The appearance of deseasonalized data ds (ds=Xt-St) indicates that 

it fits a quadratic trend. Then we remove the quadratic trend component Mt from the data. 
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Figure 5: Plots of Original Data:         Figure 6: Plots of Deseasonalized Data: 

By input the times series data in R         After removing the seasonal component 

and plot the data, it generate figure 1         of original data and it left a rising trend. 

with obvious seasonality. 

 

 

 
 

Figure 7: Plots of Residual after removing  

both seasonal and trend component, the data only  

left with residuals 

 

Figure 5 presents the CO2 data has trend and seasonal pattern with a 12-month 

cycle.  Figure 6 shows the rising trend after removing the seasonal component of CO2 

level. Figure 7 is the residual plot.  

It is unlikely to determine from the plots whether the residual is stationary, we 

therefore perform the diagnosis of et by employing the following tests: 

 



 7 

 

Test of Null Hypothesis: Residuals are IID Noise 

 

Test Distribution Statistics P-value 

Ljung-Box Q~Chisq(20) 297.65 0 

McLeod-Li Q~Chisq(20) 33.67 0.0284 

Turning Points (T-126.7)/5.8~N(0,1) 117 0.0964 

Diff signs S (S-95.5)/4~N(0,1) 94 0.7084 

Rank P (P-9168)/445.1~N(0,1) 9144 0.957 

Table 1. Diagnosis results of the residuals 

 

The null hypothesis assumes that the residuals are independently and identically 

distributed noise. Although SACF, Turning Points Test, Difference Sign Test, and Rank 

Test do not reject the null hypothesis, the diagnosis table indicates that both Ljung Box 

test and McLeod-Li test reject the null hypothesis. We therefore conclude the classical 

decomposition estimation is not an appropriate model to predict the CO2 level in April 

2015. 

Therefore, we decide to use another model to simulate the data to see whether we 

can get a better fit and prediction.        

By looking at the ACF and sample PACF of AR (1) model, we decide that AR (1) 

is appropriate. Then, we examine the MA (1) model, and it also fits the model, which 

indicates that an MA (1) model now seems appropriate. The best model for the data then 

would seem to be an ARMA model. 

 

Model ARMA: 

 

An ARMA (1, 1) process of {Xt} presents itself as 

Xt =Φ1Xt-1 +Θ1Zt−1 + Zt, where Zt ∼ WN (0, σ2). 

 

The ITSMR package in R automatically generates the number of p and q to be (1, 

1). By plugging p and q, we are able to obtain the value of phi and theta as following:  

• Φ1=0.848564 

• Θ1=-0.3452003 

• AICC=65.38236 

Thus, the exact formula of the ARMA (1, 1) is 

Xt=0.848564Xt-1-0.3452003Zt-1+Zt 

With white noise variance σ2=0.0794 
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ACF and PACF: 

 

 
Figure 8. This figure shows a good fit of ARMA (1, 1) process and residuals. Together 

with a low AICC, ARMA (1, 1) is believed to be a model with a good combination with 

simplicity and precision. 

 

Prediction and Confidence Interval 

We also check the causality and invertibility of the model, which is valid. Therefore, we 

predict that the CO2 level in April 2015 is 402.7285 ppm. 

 

 
Figure 9. 95% Confidence Interval of ARMA (1,1) prediction 

 



 9 

 

Step Prediction Sqrt(MSE) Lower Bound Upper Bound 

1 401.3826 0.2818247 400.8302 401.935 

2 402.7285 0.3155147 402.1101 403.3469 

3 403.3214 0.3376985 402.6595 404.9833 

4 402.737 0.3528094 401.0455 403.4285 

5 401.1292 0.3633012 400.4172 401.8413 

Table 2. 95% Confidence Interval of ARMA (1,1) prediction 

 

 
Figure 6. 99% Confidence Interval of ARMA (1,1) prediction 

Step Prediction Sqrt (MSE) Lower Bound Upper Bound 

1 401.3826 0.2818247 400.6569 402.1083 

2 402.7285 0.3155147 401.9161 403.541 

3 403.3214 0.3376985 402.4519 404.191 

4 402.737 0.3528094 401.8285 403.6455 

5 401.1292 0.3633012 400.1937 402.0647 

Table 3. 99% Confidence interval of ARMA (1,1) prediction 
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Discussion: 

We decided not to utilize the classical decomposition model to predict the CO2 

level because the residual et failed to pass the Ljung-Box test and McLeod-Li test. In 

contrast to the classical decomposition model, the ACF and PACF of ARMA (1, 1) 

demonstrated a good fit to the data. As a result, we decided to employ ARMA (1, 1) to 

estimate the CO2 level in April 2015.  The output of R showed that the estimated CO2 

level in April 2015 is 402.7285 ppm. In addition, the 95% confidence interval is 

(402.1101, 403.3469), and the 99% confidence interval is (401.9161, 403.541). 

The exact value of CO2 level in March 2015 has not been released. Although Dr. 

Pieter Tans from NOAA provided us with rough estimates for the March 2015 data, the 

accuracy of the data needed further confirmation from quality control procedures. Thus, 

we decide not to include the recent measurements. 

We tried to predict the CO2 level in 2014 from our model to check the feasibility 

of the model, and it indicated the time period we chose yielded best fit. That is why we 

chose CO2 level from March 1999 to February 2015 as data input.  

Record shows that the El Nino effect was very strong in 1998. Since the exact 

relationship between El Nino and the CO2 concentration was still uncertain, we removed 

the time period before 1999 to minimize interference to analysis. El Nino events in the 

years after 1999 were in smaller scale and were not expected to strongly affect the 

accuracy of the result. Thus, the time period we chose was reasonable and could generate 

sound predictions. 

We tested both lag-2 prediction and lag-1 prediction in April 2014, and the lag-1 

prediction gave the better fit. However, since we did not have the accurate data in March 

2015, the accuracy of the prediction might be compromised. 

 

 

Conclusion: 

Based on the ARMA (1, 1) process, the CO2 level in April 2015 was predicted to 

be 402.7285 ppm. The 95% confidence interval is (402.1101, 403.3469), and the 99% 

confidence interval is (401.9161, 403.541). 

According to the previous analysis, we rejected the classical decomposition model 

because it did not pass the Ljung Box test or the McLeod-Li test. 

According to the results from MA (1) and AR (1), we decided to use the ARMA 

(1, 1) model to fit this process. After running the model, we found out that the residuals 

ACF and PACF of the ARMA model gradually tails off to zero, which captures the 

feature of the ARMA model. Thus, we believed that the ARMA (1, 1) model is a good 

candidate to fit the data and to make reasonable predictions.  

The trend of the CO2 levels from our research shows a continuous increase in 

concentration, which indicates the severe global warming that human beings should be 

aware of.  
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Appendix 

 

 

R Codes: 

 

#Read in data 

Data<-scan(“test.tsm”) 

#Seasonality estimation 

s=season(Data,12) 

#Remove seasonality 

y=Data-s 

#Trend estimation 

m=trend(y,2) 

#Remove seasonality and trend 

e=Data-s-m 

#Test residuals for stationarity and randomness  

test(e) 

#Find the best models from a range of possible ARMA models 

autofit(e,p=0:7,q=0:7) 

#Check causality and invertibility of ARMA 

Check(arma(e,1,1)) 

#Estimate the residuals of ARMA model 

p=Resid(Data,xv,arma(e,1,1)) 

#Test residuals for stationarity and randomness of ARMA model 

test(p) 

#Define a new function to predict the result with 99% Confidence Interval  

#To predict 10 more steps, and the display plot and tableau 

#This is a two-sided test, so we choose the score as 2.575 

forecast99 <-function (x, xv, a, h = 10, opt = 2) 
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{ 

f = .forecast.transform(x, xv, a, h, 1) 

if (!is.null(f$phi)) { 

psi = ma.inf(list(phi = f$phi, theta = a$theta), h) 

g = function(j) sum(psi[1:j]^2) 

se = sqrt(a$sigma2 * sapply(1:h, g)) 

l = f$pred - 2.575 * se 

 u = f$pred + 2.575 * se 

 f = list(pred = f$pred, se = se, l = l, u = u) 

  } 

if (opt > 0) { 

if (is.null(f$se)) 

 cat(" Step Prediction Lower Bound Upper Bound\n") 

else cat(" Step Prediction sqrt(MSE) Lower Bound Upper Bound\n") 

for (i in 1:h) { 

cat(format(i, width = 5)) 

cat(format(f$pred[i], width = 15)) 

if (!is.null(f$se)) 

cat(format(f$se[i], width = 15)) 

cat(format(f$l[i], width = 15)) 

cat(format(f$u[i], width = 15)) 

cat("\n") 

        } 

    } 

    if (opt > 1) 

        .plot.forecast(x, f) 

    return(invisible(f)) 

} 

#Transform data: remove seasonality and quadratic trend 

xv=c(“season”,12,”trend”,2) 

#Prediction the results with default of 95% Confidence Interval 

forcast(Data, xv, arma(e,1,1), h=12, opt=2) 

#Prediction the results the newly defined function with 99% Confidence Interval 

forcast99(Data, xv, arma(e,1,1), h=12,opt=2) 

 

Output: 
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