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1. Introduction

1.1 General Idea of Meta-Analysis 

Meta-Analysis is a method for systematically combining both pertinent qualitative and quantitative 

study data from several studies to develop a single conclusion that has greater statistical power. These 

selected studies may have different conclusions. Meta-analysis’s conclusion is statistically stronger than 

the analysis of any single study, due to increased numbers of subjects, greater diversity among subjects, 

or accumulated effects and results. Generally it can give the study data a greater statistical power and 

confirmatory data analysis. Also, it can have greater ability to extrapolate to general population 

affected. In a word, meta-analysis pools together the populations from different studies into one 

statistical analysis and treats them as one large study population with one conclusion [1]. Normally study 

results could vary from one study to another. Using meta-analysis can give confirmatory study analysis 

and come out with only one single result. For example, 8 studies of streptokinase suggested its 

effectiveness in treating patients presenting with myocardial infarction, yet only 3 of these studies 

reported statistically significant results. The results of a meta-analysis combining data across all 8 studies 

concluded that streptokinase was associated with a statistically significant reduction in mortality [2]. 

In meta-analysis, the number of trials matter as well as the quality of the trial included. The techniques 

used in meta-analysis provide a structured and standardized approach for analyzing prior findings in a 

specific topic in the literature. Meta-analysis findings may not only be quantitative but also may be 

qualitative and reveal the biases, strengths, and weaknesses of existing studies. The result could be 

misleading if the meta-analysis only include poor quality studies. It is also important to account for 

varying sample sizes across trials. Usually sample size varies greatly among trials. The result of the meta-

analysis is based on the weighted average from the results of selected studies. 

Meta-analysis may suffer from publication bias because studies with negative results are less likely to be 

published. This can impact the selection of studies for a meta-analysis. Therefore, results from meta-

analysis may overstate the positive results.  

1.2 Differences between Bayesian and Frequentist 

The Bayesians model uncertainty by a probability distribution over hypotheses. One’s ability to make 

inferences depends on one’s degree of confidence in the chosen prior, and the robustness of the 

findings to alternate prior distributions may be relevant and important.  The frequentist school only uses 

conditional distributions of data given specific hypotheses. The presumption is that some hypothesis is 

true and that the observed data is sampled from that distribution. In particular, the frequentist 

approach does not depend on a subjective prior that may vary from one investigator to another [4]. For 

example, Bayesian and frequentist have different views in interpreting the 95% confidence interval. For 

Bayesian, they would interpret it as that there is a 95% probability that the parameter is in this interval. 

But for Frequentists, they would say that there is 95% confidence that the parameter is between the 

intervals [5].  



1.3 Relationship between Meta-Analysis and Bayesian 

As the Higgins and Spiegelhalter indicated in their study, the early trial results of magnesium have been 

said to be ‘too good to be true’. Bayesian approach was proposed to formally accommodate the 

interpretation of usually strong treatment effects on the meta-analysis and meta-trials. In this way, they 

can emphasize the skepticism. In this study, they use a Bayesian perspective to possibly influence the 

interpretation of the published evidence on intravenous magnesium in acute Myocardial Infarction. 

Bayesian analysis will allow them to incorporate the skepticism in this study [6]. 

1.4 Controversy of the Use of Intravenous Magnesium in Patients with Acute Myocardial Infarction 

Intravenous magnesium has long been believed to play an important role in patients with acute 

myocardial infarction. But there have been many responses to the apparent contradiction between the 

meta-analysis and the meta-trial. First, Yusuf responded to the ISIS-4 results and Flather pointed out 

that “since most treatments product either no effect or at least moderate effects on major outcomes 

such as mortality, investigators should be skeptical if the results obtained deviate substantially from 

these expectations. Some studies also showed that the choice of statistical methods used for the meta-

analysis can generate substantially different results. Some researchers also claimed that there were 

some limitations in the meta-trials. For example, Borzak and Ridker pointed out that “an important 

limitation of the ISIS-4 protocol was that the actual time of magnesium initiation was unknown”.[6] 

2. Introduce the Models

2.1 The Difference between Fixed Effects and Random Effects Meta-Analysis 

Fixed effect assumes there is only one true effect size, which underlies all studies in the meta-analysis. 

The fixed effects model assumes that all included studies investigate the same population, use the same 

variable and outcome definitions, etc. The differences among studies are purely random errors or noises. 

We can express a simple fixed effect model as below: 

     

In this model, we can view β as the true treatment effect and    as the random noise, while 

            . The fixed effect model provides a weighted average of a series of study estimates. The 

inverse of the estimates' variance is commonly used as study weight, such that larger studies tend to 

contribute more than smaller studies to the weighted average. Fixed effect model only considered the 

within study variance. So when we calculate weight, we can express it as 

  
 

  

Random effects emphasized heterogeneity in the data. It treats the variances as two types- within study 

variance and between study variance.  So in this random effect model, the model’s variance is expressed 

with two types: 
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    and they are independent of one another. Now the weighted average 

can be expressed as 

  

   
 

  
    

 
 

In random effect, they assume studies are different, and there is a distribution of study effects. 
Heterogeneity is considered and is the key to separate with fixed effect models. If there is evidence of 
heterogeneity among the population effects, then random effect models should be considered. Under 
the fixed effect model, all studies are estimating the same effect size, and so we can assign weights to all 
studies based entirely on the amount of information captured by that study. A larger study could give 
more weight on it. By contrast, random effect model is trying to estimate the mean of a distribution of 
true effect. Large studies may yield more precise estimates than small studies, but each study is 
estimating a different effect size, and each of these effect size serve as a sample from the population 
whose mean we want to estimate [7-8]. 

 

2.2 Dataset 

The dataset provided contains 15 different trials. It also provides the year of the trials. We can see the 

trials were performed during 1980s and 1990s. The dataset also includes both treatment groups and 

control groups. For each group, they also have the number of patients and deaths. In the ISIS-4 study, 

we can see there are 29011 patients in the treatment groups and 29039 patients in the control groups. 

They are substantially larger than other studies. In the fixed effect model, ISIS-4 may have bigger impact 

on the meta-analysis results than the random effect model. The details of the dataset can be found in 

table 2 on the below.  

2.3 Peto Method Model Specifications 

The Peto method is a widely used statistical method in fixed effect model. It can be used to summarize 

the odds ratio. Normally case-control studies of dichotomous (binary) outcomes can by arrange by a 2*2 

table. In this meta-analysis’s case, the table would be arranged by the below: 

 Treatment Control 

Dead a b 

Alive c d 

 

Here we have n number of sample size, where n=a+b+c+d. k is the number of trials. 

Peto odds ratio can be calculated by using this [9]: 
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Peto odds ratio method has become the very fundamental choice for binary studies. However, it could 

lead to biased estimates for the odds ratio when the treatment effects are large or the group size ratio is 

not balanced [10]. 

2.4 DerSimonian and Laird Method Model Specification 

DerSimonian and Laird (DL) method is commonly used method in meta-analysis random effect model. It 

initially assumes the estimate of treatment effect from the ith study, Yi is distributed as              
  , 

where    is the true underlying treatment effect of the ith study and   
  is the corresponding within study 

variance. In DL, it also assume that          
  , where µ is the overall treatment effect and    is the 

between- study variance. They are also independent of each other [11].
 

In DL method model, Q statistics is applied.  
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   . Similar to Peto method, n is the number of trials/studies. Then we can 

calculate the expectation of Q: 
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   , which provides the DerSimonian and Laird estimate 

   
         

       

   
  

  

  

Then the estimate for the treatment effect would be 
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This method was the simplest method for random effect model. This is a relatively more sophisticated 

methodology when the sample size is large or the group size is not balanced. 



3 The Frequentist Analysis 

3.1 Reproduce the Table 2 

Magnesium group Control group 

Trial Deaths Patients Deaths Patients 

Morton 1 40 2 36 

Rasmussen 9 135 23 135 

Smith 2 200 7 200 

Abraham 1 48 1 46 

Feldstedt 10 150 8 148 

Shechter 1990 1 59 9 56 

Ceremuzynski 1 25 3 23 

LIMIT-2 90 1159 118 1157 

Fixed Effect (Peto) meta-analysis of above 9 trials: OR =0.65(95%CI: 0.51,0.82) 

Random Effect (DL) meta-analysis of above 8 trials: OR=0.55 (95% CI: 0.34,0.89) 

Bertschat 0 22 1 21 

Singh 6 76 11 75 

Pereira 1 27 7 27 

Golf 5 23 13 33 

Thogersen 4 130 8 122 

Shechter 1995 4 107 17 108 

Fixed Effect(Peto) meta-analysis of above 14 trials: OR=0.57 (95% CI: 0.46,0.71) 

Random Effect (DL) meta-analysis of above 14 trials: OR=0.47 (95%CI: 0.33, 0.68) 

ISIS-4 2216 29011 2103 29039 

Fixed Effect(Peto) meta-analysis of above 14 trials: OR=1.0098(95% CI: 0.95,1.07) 

Random Effect (DL) meta-analysis of above 14 trials: OR=0.53 (95%CI:0.36,0.77) 
Note: See the R code for OR calculation in Appendix 

3.2 Forest Plot  

I produced two plots- one is for log odds ratio, and another one is for odds ratio. 





The odds ratio of one indicates that there is no treatment effect. Odds ratio less than one means that 

there may be some treatment effect. Odds ratio greater than one means the treatment effect may have 

the opposite effect. Specifically, the 8 trials in the fixed effect model show that the odds ratio is 0.65. 

This could mean that the odds of being dead in the treatment group is 0.65 times the odds being dead in 

the control group; Similar interpretation for the 14 trials in the fixed effect model; Their odds ratios are 

less than 1. This could suggest there is a significant treatment effect. However, in the 15 trials, the odds 

ratio is greater than 1. It could suggest there is no significant treatment effect after adding ISIS-4 study. I 

think this is because the ISIS-4 is a large study and it can have a much greater weight in meta-analysis by 

using Peto method. The forest plot shows the odds ratio for ISIS-4 is 1.06 and the sample size of ISIS-4 is 

relatively large than all other trials. In Peto method, ISIS-4’s study can have greater impact on the overall 

treatment effect. In contrast, the odd ratio in random effect model does not change dramatically.  In 

details, the odds ratio for the first 8 trials is 0.55 under random effect model. After adding 6 more 

studies, it decreased a little to 0.47. Adding the large study ISIS-4, the odds ratio only changed from 0.47 

to 0.53. These odds ratios in random effect analysis show that there is a significant treatment effect. In 

conclusion, I prefer random effect model. I think this is because the between study variance is 

incorporated into the random effect model. So these three tests results did not change much under 

random effect model.  

4. The Bayesian Analysis

Bayesian statistics is an approach to statistics based on a different philosophy from that which underlies 

significance tests and confidence intervals. It is essentially about updating of evidence. In a Bayesian 

analysis, initial uncertainty is expressed using a prior distribution [12]. In this meta-analysis, the prior 

distribution describes uncertainty regarding the odds ratio. In this Bayesian analysis, I am using Rstan 

package in R. Here is the model specification: 

  is the number of death in the control group; 

   is the probability of being dead in the control group; 

   is the number of patients in the control group; 

   is the number of death in Magnesium group; 

   is the probability of being dead in the Magnesium group; 

   is the number of patients in the Magnesium group; 

We are using the binomial distribution in the stan: 
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The log odds ratio in the Magnesium group,    , is modeled by this: 
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Where          , In this model, we specify                  . I choose this as our reference prior. 

However, for our skeptical prior, we let         √     ).

After running the Stan code (attached in the appendix), we can see the estimated mean odds ratio of 

reference prior is 0.395 (exp(-0.93), in the Stan model, I got the log odds ratio instead of odds ratio).and 

skeptical prior is 0.748. Here are the histograms and traceplots for both models: 





We can see both reference and skeptical histograms are highly skewed. For reference histogram, most 
of the odds ratios fall into the 0 to 0.5 range. But for skeptical histogram, most of the odds ratios fall into 
0 to 0.8 by eyeballing.  

From these two traceplots we can see that these 3 MCMC chains are very consistent. By checking the 

convergence of these MCMC chains, we can tell both plots have constant mean and variance.  For the 

reference prior distribution, I got the posterior probability of odds ratio less than one is 0.896. The 

posterior probability of odds ratio less than 0.9 is 0.869.  For the skeptical prior distribution, the 

posterior probability of odds ratio less than one is 0.674.The posterior probability of odds ratio less than 

0.9 is 0.62.  We can see that the posterior probability for skeptical is less than the reference.   

5. Conclusion

In this project, I tried both frequentist analysis and Bayesian analysis. In Frequentist analysis, I have tried 

with both fixed effect model (Peto) and random effect model (DerSimonian and Laird Method). In Peto 

method, we can see the obvious limitation of this method after adding the ISIS-4 study, which has much 

greater sample size and effect size. In contrast, the DerSimonian and Laird is relatively stable even 

though we have added ISIS-4 study. In the meta-analysis of using all 15 trials, Peto result suggest there is 

no treatment effect. 15 trials meta-analysis in DerSimonian and Laird method suggest that the odds 

ratio is smaller than 1, and therefore there is some treatment effect for Magnesium in Myocardial 

Infarction. This corresponds to Antman’s study conclusion that a random effects model gives materially 

different results from the fixed effect model used by Teo et al[6].   



Then I used the Bayesian analysis for these 15 trials. Then I estimated the mean (log) odds ratio for both 

reference prior and skeptical prior. The mean odds ratio for reference prior is 0.395, and the mean odds 

ratio for skeptical prior is 0.748. Both results suggest there is some treatment effect in Myocardial 

Infarction. This means that the odds of being dead in the treatment group is 0.395 times the odds being 

dead in the control group under the reference prior. Under the skeptical prior, the odds of being dead in 

the treatment group is 0.748 times the odds being dead in the control group. In addition, we can tell 

that the posterior probability of odds ratio less than 1 for skeptical prior is much less than the reference 

prior, which is expected.  

Overall, random effect (DL method) has the same results with Bayesian analysis. Their result indicates 

there is some treatment effect of Magnesium in Myocardial Infarction. I personally would prefer 

Bayesian analysis. On the one hand, in this project, it has constant result with random effect. On the 

other hand, I prefer interpreting results using probability. Therefore, I would believe the Bayesian’s 

result of this meta-analysis. This means that magnesium is effective in preventing acute myocardial 

infarction. 

 

  

 

 

  



require(foreign)

#dat<- read.csv("C:/Users/jyao/Downloads/magnesium.csv", header = TRUE)
dat<- read.csv("~/Downloads/magnesium.csv", header = TRUE)
require(metafor)
require(rmeta)

######################peto analysis###################################
#peto method for all 15 trials
peto15<-rma.peto(ai=dead1, n1i=tot1,ci=dead0,n2i =tot0, data=dat)
peto15

#peto method for 8 trials
cat<- sample(0,15, replace = TRUE)
dat2<- cbind(dat, cat)
dat2$cat[1:7]<-1
dat2$cat[13]<-1

peto8<-rma.peto(ai=dead1, n1i=tot1,ci=dead0,n2i=tot0, data=dat2, subset = (cat==1))
peto8

#peto method for 14 trails
cat2<- sample(0,15, replace = TRUE)
dat3<- cbind(dat2, cat2)
dat3$cat2[1:14]<-1

peto14<-rma.peto(ai=dead1, n1i=tot1,ci=dead0,n2i=tot0, data=dat3, subset = (cat2==1))
peto14

#alternative way
a<- escalc(measure = "PETO",ai=dead1, n1i=tot1,ci=dead0,n2i=tot0, data=dat, add = 0 )
b<- rma(yi,vi, data=a, method = "FE")

#Forest plot
forest(a$yi,a$vi, slab = dat$trialnam, transf = exp)
forest(a$yi,a$vi, slab = dat$trialnam)

#######################DerSimonian Laird analysis######################
#all 15 trials
DL15<- meta.DSL(ntrt = tot1, nctrl = tot0, ptrt = dead1, pctrl = dead0, data = dat)
DL15

#8 trials
DL8<- meta.DSL(ntrt = tot1, nctrl = tot0, ptrt = dead1, pctrl = dead0, data = dat2, subset=(cat==1))
dat99<- dat2[dat2$cat==1,]
DL8<- meta.DSL(ntrt = tot1, nctrl = tot0, ptrt = dead1, pctrl = dead0, data = dat99)
DL8

#14 trials
dat88<- dat3[dat3$cat2==1,]
DL14<-meta.DSL(ntrt = tot1, nctrl = tot0, ptrt = dead1, pctrl = dead0, data = dat88)

######Bayesian Parts #################

k=15
nc<-dat$tot0
nm<-dat$tot1
rc=dat$dead0
rm=dat$dead1

set.seed(100)
model = "data {
int <lower = 0> k; 

Appendix



int <lower = 0> nc [k];
int <lower = 0> nm [k];
int <lower = 0> rc [k];
int <lower = 0> rm [k];
}

parameters{
real <lower = 0, upper = 1> pc[k];
vector[k] delta;
real mu;
real <lower = 0> sigma;
real deltanew;
}

transformed parameters {
real <lower = 0, upper = 1> pm[k];
for (i in 1:k) {
pm[i] = exp(log(pc[i]/(1-pc[i])) + delta[i])/(1+exp(log(pc[i]/(1-pc[i])) + delta[i]));
}
}

model {
# model
#for (i in 1:k) {
rc ~ binomial(nc, pc);
rm ~ binomial(nm, pm);
delta ~ normal(mu, sigma);
#}
deltanew ~ normal(mu, sigma);

# priors
#for (i in 1:k) {
pc ~ uniform(0,1);
#}

mu ~ normal(0, 100);
sigma ~ uniform(0, 100);

}"

fit1 = stan(model_code = model, data = c("k", "nc", "nm", "rc", "rm"), pars = "deltanew", iter = 500000, 
chains = 3, warmup = 500)
print(fit1)
traceplot(fit1, pars= "deltanew")

#odd ratio =0.3945

########################SKEPTICAL#################################

model = "data {
int <lower = 0> k; 
int <lower = 0> nc [k];
int <lower = 0> nm [k];
int <lower = 0> rc [k];
int <lower = 0> rm [k];
}

parameters{
real <lower = 0, upper = 1> pc[k];
vector[k] delta;
real mu;
real <lower = 0> sigma;
real deltanew;
}

transformed parameters {



real <lower = 0, upper = 1> pm[k];
for (i in 1:k) {
pm[i] = exp(log(pc[i]/(1-pc[i])) + delta[i])/(1+exp(log(pc[i]/(1-pc[i])) + delta[i]));
}
}

model {
# model
#for (i in 1:k) {
rc ~ binomial(nc, pc);
rm ~ binomial(nm, pm);
delta ~ normal(mu, sigma);
#}
deltanew ~ normal(mu, sigma);

# priors
#for (i in 1:k) {
pc ~ uniform(0,1);
#}

mu ~ normal(0, 0.1749);
sigma ~ uniform(0, 100);

}"

fit2 = stan(model_code = model, data = c("k", "nc", "nm", "rc", "rm"), pars = "deltanew", iter = 500000, 
chains = 3, warmup = 500)
print(fit2)
#odd ratio =0.74
traceplot(fit2, pars= "deltanew")

efit1 <- extract (fit1, permuted=TRUE)
hist(exp(efit1$deltanew), xlim =c(0,2), breaks = 10000000, main="Reference")

efit2 <- extract (fit2, permuted=TRUE)
hist(exp(efit2$deltanew), xlim = c(0,2), breaks = 10000000, main="Skeptical")
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